Iterative Weighted Least Squares Estimators
نویسندگان
چکیده
منابع مشابه
Iterative weighted least-squares identification and weighted LQG control design
Abstrart-Many practical applications of control system design based on input-output measurements permit the repeated application of a system identification procedure operating on closed-loop data together with successive refinements of the designed controller. Here we develop a paradigm for such an iterative design. The key to the procedure is to account for evaluated modelling error in the con...
متن کاملMixing Least - Squares Estimators
We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We mix least-squares estimators from various models according to a procedure inspired by that of Leung and Barron [17]. We show that in some cases the resulting estimator is a simple shrinkage estimator. We then apply this procedure in various statistical settings such as linear regression or adapt...
متن کاملWeighted Least Squares Estimators for a Change-Point
This article deals with estimation of the change-point in a sequence of independent random variables. It is based on a least squares process endowed with a weight function. For finite sample sizes we derive bounds of the error probability. They immediately yield rates of consistency which are known to be optimal. Our findings extend and sharpen earlier results of Antoch, Hušková and Veraverbeke...
متن کاملWeighted least squares estimators in possibly misspecified nonlinear regression
The behavior of estimators for misspecified parametric models has been well studied. We consider estimators for misspecified nonlinear regression models, with error and covariates possibly dependent. These models are described by specifying a parametric model for the conditional expectation of the response given the covariates. This is a parametric family of conditional constraints, which makes...
متن کاملAnalysis of algebraic weighted least-squares estimators for enzyme parameters.
An algorithm for the least-squares estimation of enzyme parameters Km and Vmax. is proposed and its performance analysed. The problem is non-linear, but the algorithm is algebraic and does not require initial parameter estimates. On a spreadsheet program such as MINITAB, it may be coded in as few as ten instructions. The algorithm derives an intermediate estimate of Km and Vmax. appropriate to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1993
ISSN: 0090-5364
DOI: 10.1214/aos/1176349165